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Abstract: A class of algorithms is presented for training multilayer perceptrons using purely "linear" tech-
niques. The methods are based upon linearizations of the network using error surface analysis, followed by a
contemporary least squares estimation procedure. Specific algorithms are presented to estimate weights node-
wise, layer-wise, and for estimating the entire set of network weights simultaneously. In several experimental
studies, the node-wise method is superior to back-propagation and an alternative linearization method due to
Azimi-Sadjadi et al. in terms of number of convergences and convergence rate. The layer and network-wise
updating offer further improvement.

1. Introduction

This paper introduces a new class of learning algorithms for feedforward neural networks (FNN) with im-
proved convergence properties. In spite of the nonlinearities present in the dynamics of a FNN, the learning
algorithm is purely "linear" in the sense that it is based on a contemporary version (see [1]) of the recursive
least squares (RLS) algorithm (e.g. [2]). Accordingly, unlike the popular back-propagation algorithm used to
train FNNs [3, 4], the new learning algorithm and its potential variants will benefit from the well-understood
theoretical properties of RLS and VLSI architectures for its implementation.

A FNN is an artificial neural network consisting of nodes grouped into layers. In this paper, we consider
a two-layer network 2, but the generalization of the method to an arbitrary number of layers is not difficult.
Working from the bottom up, we shall frequently refer to layers zero, one. and two as the "input," "hidden,"
and "output" layers, respectively. Each node above the input layer in the FNN passes the sum of its weighted
inputs through a non-linearity to produce its output. The inputs to the input layer are the external inputs to
the network, and the outputs of the output layer are the external outputs.

The number of nodes in layer i is denoted Ni, with No indicating the number of input nodes at the bottom
of the network. The weight connecting node j in the hidden liyer to node k in the output layer is denoted Wkj.
The weight connecting input node 1 to node j in the hidden layer is denoted w. We denote by N the number
of training patterns of the form

{(xt(n), x 2(n),. xv,(n); tI(n), t2 (n), ... ,tN(n)), n = 1, 2, . ., N, (1)

in which xt(n) is the input to the I" node in layer zero, and tk(n) is the target output for node k in the output
00 ___ layer (output desired in response to the corresponding input). The computed outputs of layer two [one] in

e_ response to -(n),..,No(n) are denoted yi(n),. yN" [y(n),..., 2]. Finally, we need to formalize the
c nonlinearity associated with the nodes. Consider node k in the output layer. For given weights, Wkj, j E [1, N],

} the output in response to the nth input is

Y k(n) = S (2)

.... in which S(.) is a differentiable nonlinear mapping. For future purposes, we define S(.) to be the derivative of

.5(.). For c,,nvo'nierc we also define Uk(fl) '-.dZ wk,jYl(n) . Clearly, uk(n) is the input to node k in the
output layer in response to pattern n. u,(n) is similarly defined as the input to node I in the hidden layer.

I Acknowledgements: This work was supported by the Office of Naval Research under Grant No. N00014-91-J-1329. and by
the National Science Foundation under Grant No. MIP-9016734. JD was also supported by an Ameritech Fellowship and SH by a
fellowship from the University of Puerto Rico.

2 Some authors might choose to call this a three layer network. We shall designate the bottom layer of "nodes" as "layer zero"
and not count it in the total number of layers. Layer zero is a set of linear nodes which simply pass the inputs unaltered.
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Many training (weight estimation) algorithms exist for this type of network (e.g. [3] - [7]). The most popular,
the back-propagation algorithm [3], [4], performs satisfactorily in some cases if given enough time to converge.
However, the literature abounds with example applications in which back-propagation convergence is too slow L, W
for practical usage (e.g. see [8]). One attempt to develop faster training methods is represented by the class
of algorithms in which the network mapping is "linearized" in some sense in order to take advantage of linear'
estimation algorithms. It is with this class of algorithms that this paper is concerned. a ,'' 8

2. Linearization Algorithm WV
The fundamental training problem for the two layer FNN is stated as follows: Given a set of N training

patterns as in (1), find the network weights which minimize the sum of squared errors, [
E 1 N Z'1 A(n)(tk(n) - yk(n)) 2,where the weights A(.) are included for generality. For a given set of

training pairs, E is a function of the weights of the network. A graph of E over the weight space is frequently
called an error surface. Ideally, a training algorithm would find the weights corresponding to the global mini-
mum of the error surface. Training algorithms usually operate by sequentially presenting the training pattern .Ift

and moving the weights toward a minimum of the error surface. The procedure is repeated several times using 1 s
different initial weights in order to locate the best minimum. Ideally, all weights will be altered with each
presentation of the set of training patterns so that the weights may move in the direction of steepest descent. In
this case the algorithm represents a true gradient descent approach. In practice, however, no reasonable algo-
rithm exists which can simultaneous change each weight in the network. In fact, the popular back-propagation
algorithm works on only one weight at a time. One of the principal benefits of the method to be presented here
is that many weights can be simultaneously updated.

The linearization technique adopted in this work can be explained in terms of error surface analysis. In
effect, for a present set of weights and a given training pattern, we construct a "linearized" network with an
error surface, say E, which is "similar" in some sense to E in a neighborhood of the present weights. There are
two similarity criteria: first, that the magnitude of E and E be the same at the present weights; and second,
that the derivatives of E and k with respect to the weights to be updated be the same at the present weights
(since the other weights are not altered, it is not necessary that the derivatives with respect to those weights
match).

Let us digress momentarily from the simple two layer network and use more general description. Suppose
that the weights connected to one or more nodes in layer L are to be updated simultaneously 3 . This may include
as few as one, and as many as all, nodes in layer L. Denote the set of such selected nodes by A. Denote by "l
the set of all nodes above layer L to which any node in Kf is connected, directly or indirectly. Let all weights not
connected to nodes in A' and Ml be fixed at present values 4 . Then it is shown in [9] that a "linearized" network
whose error surface /V is similar to E in the senses above is constructed by replacing the nonlinearity S(.) for
each node in ..V and Al by a linear approximation, say S(.), consisting of the first two terms of a Taylor series
around the "present" value of the node's input. For example, suppose the k1h output node is to be linearized
with respect to the n th training pattern. Let ?1 4,j denote the present value of weight Wk,j. Then,

j=1= \j=1 \j=1 =(N \ [S ( N i N, I) de

- j~iYinl) U+ [S k~ '(k.Yn)) -s ' tIk,LjY(fl Z k,yj(l)j =_e Kk(n)u + b(n).

In fact, since S(u) = S(u) if u is the input corresponding to the present weights, any node not in K or "l may
also be linearized with no effect on the solution. Therefore, we may assume without loss of generality that the
entire network is linearized, even if only a portion of the weights is to be updated.

It will become clear below that once the network is linearized by replacing the operation S(.) by .'(-) in all
appropriate nodes, in principle any least square error algorithm can be used to update the weights. Algorithms
based on similar ideas for updating weights one node at a time are given by Azimi-Sadjadi et al. [5] (henceforth,
A-S algorithm) and by Hunt and Deller [9]. The former is based on the conventional RLS algorithm [2] with a

"If any weight connected a node is to be updated, then every weight connected to that node must be updated. This "constraint"
is ordinarily beneficial, since it implies the ability to simultaneously update more than one weight.

4n certain cases it is possible to update weights in differer" layers simultaneously. We discuss one case at the end of this section.
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forgetting factor, while the latter employs a contemporary QR decomposition algorithm [1, 10] for significant
performance improvement. The view of the method taken above allows us to to further exploit the linearization
by complete layer-wise updating of weights for even further improvement. Let us pursue this layer-wise approach.

Suppose we wish to update all weights in the output layer simultaneously. We must linearize all output
nodes (and may arbitrarily linearize any other nodes). For node k in the output layer, the output in response
to input n is computed as in (2). Let qk(n) represent the output of node k after S(uk(n)) as been replaced by
S(uk(n)) = Kkuk(n) + bk. Accordingly,

N, Ni

yk(f) = Kk(n)[Z Wkjyj'(f)] + bk(n) or 2k(n) = Kk(n)[ZWkjY(n)I (4)
j=i j=i

with 'k(n) PS Pk(n) - bk(n). We speak of the rightmost form in (4) as descriptive of a linearized node since
the output is a purely linear combination of the inputs to the node. The network with all appropriate nodes
linearized will be called the linearized network. Since Pk(n) = yk(n) at the present weights, the error at the kih
node will be the same for the linearized and original network if the target value for Zk(n), say lk(n), is taken to
be

tk(n) = tk(n) - bk(n) (5)

and the linearized inputs to node k at pattern n are

Xkj(n) A'ef k(n)yj(n), 1,2,..., N1 . (6)

Note that the linearized inputs are dependent upon k, so that we have effectively increased the number of
training pairs by a factor of N2 .

The problem has effectively been reduced to one of estimating weights for a single-layer linear network. In
order to simultaneously in, i te the all weights in the output layer, the system of N x V2 equations

N1

tk(n)=Lr 4jtVkj, k= 1,2 ..... N2  n= 1.2 ... , N (7)
j=1

must be solved for the least square estimate of the N, x N2 weights wk,j, k E (1, N 2] j E [1, N1 ]. However, since
all weights in the hidden layer are fixed, the outputs y (n) are independent of k. This means that the equations
indexed by different values of k are independent of one another, and the sets of weights connected to different
outputs may be updated independently. In the output layer, therefore, there is no theoretical difference between
layer-wise and node-wise updating. This is not true at lower layers, however, as we now show for the hidden
layer of the present network.

To update all weights in the hidden layer simultaneously, the weights in the output layer are fixed and all
nodes in the network must be linearized. The outputs of the hidden layer with S(.) replaced by S(.) are given
by

No

gj(n) = K i(n)[E w,x(n)] + b'(n), j = 1,2_..., Nj. (8)
1=1

Substituting (8) in the leftiiost expression in (4) results in

N, N1 No

9k(n) - [EZ Kk(n)wk~jb'(n) + bk(n)] = Z: Z[Kk(n)wkjKj(n)x1(n)]wj',. (9)
j=i j=i 1=1

As above, we can now view the problem as one of training a single-layer linear mapping with target outputs

N,

= tk(n) -1[ Kk(n)wkjb (n) + bk(n)I (10)
j=1

and inputs
='.jt(n) Kk(n)wkj K (n)xz(n). (11)
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The weight estimates for w,, j E [1, N] 1 E (1, No] comprise the least square error solution to the system of
equations

N, No

Pk:(n)E= E ,j,,,(n)w,, k = 1,2,...,N 2 n= 1,2,..., N. (12)
j=1 1=1

Unlike the output layer, we see that the problem cannot be decomposed into separate solutions for sets of
weights connected to individual nodes in the hidden layer. This is a reflection of the fact that all weights in the
hidden layer are coupled through their "mixing" in the output layer. This means that the simultaneous solution
for all weights in the hidden layer should be beneficial with respect to a node-wise solution. Indeed we will find
this to be the case in the experiments. Of course, this same intra-layer dependence of weights would continue
if there were further hidden layers to be considered.

Note that, for a fixed k, the inputs to the linearized network, .'(n), n E [1, N], are most conveniently viewed
as two-dimensional (indexed by couples (j. 1)). There are N such "grid" inputs for each k, paired with the N
values of tk(n). If there were further hidden layers in the network, we would find that the effective inputs would
continue to increase in dimension. Further, it is noted that the role of k in (12) is somewhat superfluous. In
principle, the index is used to keep track of which of N2 outputs in the linearized network is being considered.
However, the training pairs ([(n);41 1 (n)..... ±',,,(n)), k E [1, N 2] n E [1, N], can be reindexed by

mapping pairs (k, n) - i so that the training pairs may be written (t'(i); 1,1(),... XN,,gM(?)), i E [I1, V x N2].
Of course, an identical system of equations to (12) results, but the linearized network may be viewed as a single
output linear layer with N x N 2 training pairs.

Updating of some subset of the weights in the hidden layer (in particular, "node-wise" as in the A-S algo-
rithm) is tantamount to solving the subsystem of (12) corresponding to the desired weights, introducing the
updated values into the system, solving for the next desired subset, etc. Clearly, this will result in a different
solution than the simultaneous solution. In terms of the error surfaces, this process consists of continually up-

dating the error surface as "partial" information becomes available, then moving in the direction of the gradient
with respect to a new subset of weights in the updated surfaces. Intuitively, movement "at once" with respect
to the "complete" gradient would seem to be a preferable procedure. Indeed, the later operation corresponds
to the simultaneous updating.

The linearization allows us to approximate the error surface of the nonlinear system for only a small neigh-
borhood around the present weights. Because of the criteria used to construct E, the weights will be changed
in the direction of the true gradient in the nonlinear space, but will move to the minimum of E which may be
quite far from the neighborhood over which E El. Accordingly, the weights must be allowed to change only a
small amount using the training patterns of the linearized system. If the linearized procedure results in a large
change of weights, measures must be taken to decrease the alteration. The updating procedure is repeated until
changing the weights does not result in a decrease in error. The algorithm proceeds as follows: linearize the
system around the present weights, change the weights by a small amount to decrease error, then repeat the
procedure. This is done until changing the weights does not decrease the error or a maximum on the number
of linearizations is reached.

For the same reason that simultaneous layer-wise estimation of weights is beneficial, we should expect even
more benefit from complete network updating if such were possible. It follows from the developments above
that entire network updating is possible for at least one case. If there is a single node in the output layer of the
network, let k = I and define

tut = (13)

From (9) it follows that

N, N 0  NX

(91(n) - bi(n)) = Z Z[K(n)K(n)x(n)]wjJ + Z[K(n)b'(n)]wij. (14)
j=l I=1 j=1

This can be interpreted as an attempt to train a single linear layer with one output and (No x NI) + N 1

inputs. In this case, there will be only N linearized training patterns. The system can be solved for wl2 and

u'j. E [I. Ni] I E [1, No] and (13) can be used to solve for w 1 , j E [1, Nil I E [1, N 0].

3. Experimental Results

The results given in this section compare five training strategies for a FNN. These are: 1. Conventional
back-propagation (no linearization in the sense described here, weight-wise updating); 2. A-S algorithm (node
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IImplementation IIBack-Prop A-S I Node Updating Layer Updating f Network Updating I
No. of Convergences 11 8 78 96 99

Table 1: Number of convergences per 100 sets of initial weights in experiments with the XOR network.
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Figure 1: Average error in dB for the XOR implementations vs. iteration number. 1.Back-propagation; 2.A-S
algorithm; 3. Node-wise updating; 4.Layer-wise updating; 5.Network wise updating.

linearization, then conventional RLS with a forgetting factor for node-wise updating); 3. Linearization method
described above with node-wise updating based on QR decomposition; 4. Same as 3 with layer-wise updating; 5.
Same as 3 with complete network updating. The two-bit parity checker (XOR) network used in the simulations
has two inputs, two hidden layer nodes and one output node. An additional node is added at each layr, whose
output value was always unity, to serve as a bias for each node in the layer above. The initial weights were
chosen as follows. Each weight in the network was selected randomly from a uniform distribut',, over the
interval [-1, 1]. This procedure was repeated 100 times to select 100 sets of initial weights. The .-.tme 100 sets
of weights were used for all five implementations. For the back-propagation algorithm, a f, tor of 0.0.4 was
used in the weight updating equation. The A-S algorithm was implemented using no weight change constraints.
The forgetting factor for A-S and for the QR decomposition implementation was 0.98. The QR decomposition
implementation used a weight constraint of 0.2, meaning that the weight vector associated with each node was
allowed to change at most by 0.2 in Euclidean norm during each iteration. The lay ,r-wise updating algorithm
has a forgetting factor of 0.3 and a weight constraint of 1.0. The network-wise updating algorithm had the same
forgetting factor and weight constraint as the layer case.

Simulations were run to compare the number of times each implement'Ltion found weights that solve the
XOR problem for the 100 initial weight sets. The results are shown in T'b!e 1.

Simulations were also run to compare the output error of each algorithm. In the resulting figures, the error
in dB means the following: Let c(i) be the sum of the squared errors incurred in iteration i through the training
patterns, averaged over the 100 initial weight sets. Then, plotted in the figures is 10 log(E(i)/p) (dB), where /i
is the maximum possible error in any iteration. Figure 1 shows the errors of the four XOR implementations.
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4. Conclusions

A new implementation for node-wise weight updating algorithm for feedforward neural networks and new
algorithms that update weights layer-wise and network-wise have been presented in this paper. The QR decom-
position implementation has been shown experimentally to be superior to standard recursive equations for the
node-wise updating algorithm. The layer-wise and network-wise weight updating algorithms were developed
to improve the convergence rate and the speed of convergence. Both objectives were accomplished, with the
layer-wise weight updating algorithm showing a significant advantage over both the single node weight updating
algorithm used as a reference, and the widely used back-propagation algorithm.
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